§ Recall notations

$$
\begin{aligned}
& M \simeq \mathbb{Z}^{2}, M^{v}=N \\
& \cdot \sum \text { a } \operatorname{fan} \text { in } M \\
& \cdot T_{\Sigma}=\left\langle\Sigma^{[1]}\right\rangle_{\mathbb{Z}} \\
& \Rightarrow 0 \longrightarrow K_{\Sigma} \longrightarrow T_{\Sigma} \xrightarrow{r} M \rightarrow 0 \\
& \cdot R_{k}=\frac{\mathbb{C}\left[u_{1}, \cdots, u_{k}\right]}{\left(u_{1}^{2}, \cdots, u_{k}^{2}\right)} \\
& M_{R}=\left(u_{1}, \cdots, u_{k}\right)
\end{aligned}
$$

$\S \log$ derivations

$$
\begin{array}{rl}
(1):=R_{k}\left[T_{\Sigma}\right] \otimes_{\mathbb{Z}} & N \\
\cup & \\
f \otimes n & \sim f \cdot \partial_{n}
\end{array}
$$

Rok. $n=m^{v}$, then $\partial_{n}=z^{m} \frac{\partial}{\partial z^{m}}$

$$
\text { - } f \partial_{n}\left(z^{m}\right)=f\langle n, r(m)\rangle z^{m} \quad \forall . m \in T_{\Sigma}
$$

- $\xi \in m_{R} \cdot \Theta$, define
$\exp (\xi) \in \operatorname{Ant}\left(R_{k}\left[T_{\Sigma}\right]\right)$
via: $\exp (\xi)(a)=a+\sum_{i=1}^{\infty} \frac{\xi^{i}(a)}{i!}$
this is a finite sum

$$
\text { as } m_{R}^{k+1}=0
$$

§ Same special vector fields

- $\forall m \in T_{\Sigma}$ sit $r(m) \neq 0$, choose $\quad n \in r(m)^{\perp}:=\{n \in N \mid\langle n, r(m)\rangle=0\}$

$$
\begin{aligned}
& I \subset\{1, \cdots, k\}, \quad u_{I}=\prod_{i \in I} u_{i} \\
& \cdot \xi=c \cdot u_{I} \cdot z^{m} \partial_{n}, \quad c \in \mathbb{C}
\end{aligned}
$$

Check $\xi\left(z^{m^{\prime}}\right)=c u_{I} z^{m} \partial_{n}\left(z^{m^{\prime}}\right)$

$$
=c u_{I}\left\langle n \cdot r\left(m^{\prime}\right)\right\rangle z^{m^{\prime}+m}
$$

$$
\xi^{2}\left(z^{m^{\prime}}\right)=0 \text { as } u_{I}^{2}=0
$$

$$
\begin{aligned}
\Rightarrow \exp (\xi)\left(z^{m^{\prime}}\right) & =z^{m^{\prime}}+c u_{I}\left(n, r\left(m^{\prime}\right)\right) z^{m^{\prime}+m} \\
& =z^{m^{\prime}}\left(1+c u_{I}\left(n, r\left(m^{\prime}\right)\right\rangle z^{m}\right)
\end{aligned}
$$

\oint The Lie algebra $a_{\Sigma, k}$.

Lie bracket:

$$
\begin{aligned}
{\left[z^{m} \alpha_{n}, z^{m^{\prime}} \partial_{n^{\prime}}\right] } & =z^{m}\left(\partial_{n} z^{m^{\prime}}\right) \partial_{n^{\prime}}-z^{m^{\prime}}\left(\partial_{n^{\prime}} z^{m}\right) \partial_{n} \\
& =z^{m}\left\langle n, r\left(m^{\prime}\right)\right\rangle z^{m^{\prime}} \partial_{n^{\prime}}-z^{m^{\prime}}\left\langle n^{\prime}, r(m)\right\rangle z^{m} \partial_{n} \\
& =z^{m+m^{\prime}}\left[\left\langle n, r\left(m^{\prime}\right)\right\rangle \partial_{n^{\prime}}-\left\langle n^{\prime}, r(m)\right\rangle \partial_{n}\right] \\
& =z^{m+m^{\prime}} \partial_{\left.\left\langle n, r\left(m^{\prime}\right)\right\rangle n^{\prime}-\left\langle n^{\prime}, r(m)\right\rangle\right\rangle n}
\end{aligned}
$$

Now check:

$$
\begin{aligned}
& \left.\left\langle n, r\left(m^{\prime}\right)\right\rangle n^{\prime}-\left\langle n^{\prime}, r(m)\right\rangle n, \gamma\left(m+m^{\prime}\right)\right\rangle \\
= & \left\langle n, r\left(m^{\prime}\right)\right\rangle \cdot\left\langle n^{\prime}, r(m)\right\rangle+\left\langle n, r\left(m^{\prime}\right)\right\rangle\langle\underbrace{\prime}_{=0}, r\left(m^{\prime}\right)\rangle \\
& -\left\langle n^{\prime}, r(m)\right\rangle \underbrace{\langle n, r(m)\rangle}_{=0}-\left\langle n^{\prime}, r(m)\right\rangle\left\langle n, r\left(m^{\prime}\right)\right\rangle \\
= & 0
\end{aligned}
$$

Let $a_{\Sigma, k}=\oplus_{m \in T_{\Sigma}} m_{R} \cdot\left(z^{m} \otimes r(m)^{+}\right)$

$$
r(m) \neq 0
$$

$c \Theta$
$\Rightarrow a_{\text {ck }}$ is a Lie algebra.
\Rightarrow the corresponding Lie group

$$
\begin{aligned}
V_{\Sigma, k} & =\left\{\exp (\xi) \mid \xi \in Q_{\Sigma, k}\right\} \\
& \in \operatorname{Aut}\left(R_{k}\left[T_{\Sigma}\right]\right)
\end{aligned}
$$

\& $V_{\sum, k}$ preserves the symplectic form.
Choose a basis $M=\left\langle e_{1}, e_{2}\right\rangle$
Set $\Omega=d \log z^{e_{1}} \wedge \log z^{e_{2}}$

$$
=\frac{d z^{e_{1}}}{z^{e_{1}}} \wedge \frac{d z^{e_{2}}}{z^{e_{2}}}
$$

- For any $m \in M$, define $X_{m} \in N$ s.t

$$
\begin{aligned}
X_{m}: M & \longrightarrow A M=\mathbb{Z}\left(e_{1} \wedge e_{2}\right) \simeq \mathbb{Z} \\
& m^{\prime} \longmapsto m \wedge m^{\prime}
\end{aligned}
$$

What is X_{m} explicitly?
Suppose $m=a_{1} e_{1}+a_{2} e_{2}$, then

$$
X_{m}=-a_{2} e_{1}^{v}+a_{1} e_{2}^{v}
$$

Check:

$$
\begin{aligned}
& m \wedge e_{1}=a_{2}\left(e_{2} \wedge e_{1}\right)=-a_{2}\left(e_{1} \wedge e_{2}\right) \\
& m \wedge e_{2}=a_{1}\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

Thus, Ω defines an isomorphism:

$$
\begin{aligned}
& M \xrightarrow{\sim} \longrightarrow X_{m} \\
& m \longrightarrow X_{m}
\end{aligned}
$$

- Further : $X_{m}(m)=m \wedge m=0 \Rightarrow X_{m} \in r(m)^{\perp}$.
- For $f=z^{m}$, define

$$
X_{f}=-z^{m} X_{r(m)} \in \Theta
$$

Claim X_{f} is a Hamitonian vector field
i.e. $\quad l\left(X_{f}\right) \Omega=d f$.

Indeed, by Cartan's formula, we have
Lie derivative

$$
\begin{gathered}
\mathcal{L}_{x_{f}} \Omega=\frac{d\left(\tau\left(x_{f}\right) \Omega\right)+l\left(x_{f}\right) \cdot(d \Omega)=0}{1 /} \begin{array}{c}
\text { U } \\
\text { by Claim } \\
\Omega \text { is closed }
\end{array}
\end{gathered}
$$

pf of the Claim
Suppose $f(r m)=a_{1} e_{1}+a_{2} e_{2}$

$$
\begin{aligned}
\Rightarrow X_{m} & =-a_{2} e_{1}^{v}+a_{1} e_{2}^{v} \\
& =-a_{2} z^{e_{1}} \frac{\partial}{\partial z^{e_{1}}}+a_{1} z^{e_{2}} \frac{\partial}{\partial z^{e_{2}}}
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \tau\left(x_{f}\right) \Omega=-z^{m} \cdot l\left(-a_{2} z^{e_{1}} \frac{\partial}{\partial z^{e_{1}}}+a_{1} z^{e_{2}} \frac{d}{d z^{e_{2}}}\right) \frac{d z^{e_{1}}}{z^{e_{1}}} \wedge \frac{d z^{e_{2}}}{z^{e_{2}}} \\
& =-z^{m}\left(-a_{2} \frac{d z^{e_{2}}}{z^{e_{2}}}-a_{1} \frac{d z^{e_{1}}}{z^{e_{1}}}\right) \\
& =z^{m}\left(a_{2} d \log z^{e_{2}}+a_{1} d \log z^{e_{2}}\right) \\
& =z^{m} d \log z^{a_{1} e_{1}+a_{2} e_{2}} \\
& =z^{m} d \log z^{m} \\
& =d z^{m}
\end{aligned}
$$

Conclusion:
(1) $\Omega_{\Sigma_{1} k}$ is generated by $m_{R} \cdot x_{f}$
(2) $V_{\Sigma, k}$ is a group of symplectomouphisms that preseve Ω.
\oint The commutator
Lemma If $f \in m_{R} \cdot R_{k}\left[T_{\Sigma}\right]$ and
$\theta \in V_{\Sigma, k, t h e r s}$
$\theta \circ X_{f} \cdot \theta^{-1}=X_{\theta(f)}$

Proof Suppose $\theta=\exp \left(c u_{I} z^{m} X_{m}\right)$
and $\theta^{-1}=\exp \left(-c u_{I} z^{m} X_{m}\right)$.
Recall.

$$
\begin{aligned}
& \theta\left(z^{m^{\prime \prime}}\right)=z^{m^{\prime \prime}} \cdot\left(1+c u_{I} r(m) \wedge \gamma\left(m^{\prime \prime}\right) \cdot z^{m}\right) \\
& \theta^{-1}\left(z^{m^{\prime \prime}}\right)=z^{m^{\prime \prime}} \cdot\left(1-c u_{I} r(m) \wedge r\left(m^{\prime \prime}\right) z^{m}\right)
\end{aligned}
$$

By linearity, may assume $f=z^{m^{\prime}}$ and check:

$$
\begin{aligned}
& \theta \circ X_{f} \circ \theta^{-1}\left(z^{m^{\prime \prime}}\right) \\
= & \theta_{0}\left(-z^{m^{\prime}} X_{r\left(m^{\prime}\right)}\right)\left(z^{m^{\prime \prime}} \cdot\left(1-c \cdot u_{I} \cdot r(m) \wedge r\left(m^{\prime \prime}\right) z^{m}\right)\right) \\
= & -\theta \cdot\left(z^{m^{\prime}} X_{r\left(m^{\prime}\right)}\right)\left(z^{m^{\prime \prime}}-c u_{I} r(m) \wedge r\left(m^{\prime \prime}\right) z^{m+m^{\prime \prime}}\right) \\
= & -\theta\left(r\left(m^{\prime}\right) \wedge r\left(m^{\prime \prime}\right) z^{m^{\prime}+m^{\prime \prime}}\right. \\
\left(u_{I}^{2}=0\right)= & -\left(r\left(m^{\prime}\right) \wedge r\left(m^{\prime \prime}\right)\right) z^{m^{\prime}+m^{\prime \prime}} \cdot\left(1+c u_{I}\left(r(m) \wedge r\left(m^{\prime}+m^{\prime \prime}\right)\right) z^{m}\right) \\
& +c u_{I}\left(r(m) \wedge r\left(m^{\prime \prime}\right)\right) \cdot\left(r\left(m^{\prime}\right) \wedge r\left(m+m^{\prime \prime}\right)\right) z^{m+m^{\prime}+m^{\prime \prime}} \\
& \left.-c u_{I}\left(r(m) \wedge r\left(m^{\prime \prime}\right)\right) \cdot\left(r\left(m^{\prime}\right) \wedge r\left(m+m^{\prime \prime}\right)\right) z^{m+m^{\prime}+m^{\prime \prime}}\right) \\
& -c u_{I}\left(r\left(m^{\prime}\right) \wedge r\left(m^{\prime \prime}\right)\right) \cdot\left(r(m) \wedge r\left(m^{\prime}+m^{\prime \prime}\right)\right) z^{m+m^{\prime}+m^{\prime \prime}} \\
& +c u_{I}\left(r(m) \wedge r\left(m^{\prime \prime}\right)\right) \cdot\left(r\left(m^{\prime}\right) \wedge r\left(m+m^{\prime}\right)\right) z^{m+m^{\prime}+m^{\prime \prime}} \\
= & -r\left(m^{\prime}\right) \wedge r\left(m^{\prime \prime}\right) z^{m^{\prime}+m^{\prime \prime}} \\
& -c u_{I}\left(r\left(m^{\prime}+m\right) \wedge r\left(m^{\prime \prime}\right)\right) \cdot\left(r(m) \wedge r\left(m^{\prime}\right)\right) z^{m+m^{\prime}+m^{\prime \prime}}
\end{aligned}
$$

On the other handel side

$$
\begin{aligned}
X_{\theta(f)}\left(z^{m^{\prime \prime}}\right) & =X_{\theta\left(z^{m^{\prime}}\right)}\left(z^{m^{\prime \prime}}\right) \\
& =X_{z^{m^{\prime}}\left(1+c \cdot u_{I} r(m) \wedge r\left(m^{\prime}\right) z^{m}\right)}\left(z^{m^{\prime \prime}}\right) \\
& =\left(-z^{m^{\prime}} X_{r\left(m^{\prime}\right)}-c u_{\Gamma} \gamma(m) \wedge r\left(m^{\prime}\right) z^{m+m^{\prime}} X_{r\left(m+m m^{\prime}\right.}\right)\left(z^{\left(m^{\prime \prime}\right)}\right) \\
& =-r\left(m^{\prime}\right) \wedge r\left(m^{\prime \prime}\right) z^{m^{\prime}+m^{\prime \prime}} \\
& -c u_{I}\left(\gamma(m) \wedge r\left(m^{\prime}\right)\right) \cdot\left(r\left(m+m^{\prime}\right) \wedge \tau\left(m^{\prime \prime}\right)\right) z^{m+m^{\prime}+m m^{\prime \prime}}
\end{aligned}
$$

$\oint A$ more general setting

- Fix a map $\quad r=P \longrightarrow M$

P: a tonic manoid
egg.

$$
P=T_{\Sigma} \oplus \mathbb{N}^{k}
$$

- log derivations:

$$
\begin{aligned}
& \Theta:=\Theta(\mathbb{C}[P]):=\mathbb{C}[P] \otimes_{\mathbb{Z}} N \\
& f \otimes n=f \partial_{n} \quad \text { s.t. } \\
& f \partial_{n}\left(z^{m}\right)=f\langle n, r(m)\rangle z^{m}
\end{aligned}
$$

- The maximal ideal $m \subset \mathbb{C}[P]$ generated by

$$
P \backslash P^{*}
$$

egg. $P=T_{\Sigma} \oplus \mathbb{N} v^{k}$, then $m=\left\langle u_{1}, \cdots, u_{k}\right\rangle$

- $I \subset \mathbb{C}[P]$ be a monomial ideal s.t. $\sqrt{I}=m$. eeg. $I=\left\langle u_{1}^{2}, \cdots, u_{k}^{2}\right\rangle$
- For any $\xi \in m \cdot \leftrightarrow(\mathbb{C}[P])$, define

$$
\begin{aligned}
& \exp (\xi) \in \operatorname{Ant}(\mathbb{C}[P] / I) \quad \text { s.t. } \\
& \exp (\xi)(a)=a+\sum_{i=1}^{\infty} \frac{\xi^{i}(a)}{i!}
\end{aligned}
$$

$T_{\text {a finite sum }} \bmod I$.

- The Lie algebra:

$$
Q:=\bigoplus_{\substack{m \in m \\ r(m) \neq 0}} \mathbb{C} \cdot z^{m} \otimes r(m)^{\perp} \subseteq m \cdot(\boxminus)
$$

- The Lie group:

$$
\nabla_{I}:=\{\exp (\xi) \mid \xi \in a\}
$$

- The completion :

$$
\begin{aligned}
& * \widehat{\mathbb{C P}]}:= \lim \mathbb{C}[P] / m^{k} \\
& * \widehat{V}:= \\
& \lim _{m^{k}} \text { a pro-nilpotent } \\
& \text { subgroup of Ant }(\widehat{\mathbb{C}[P]})
\end{aligned}
$$

§ The scattering diagram.
(1) A ray or a line is a pair $\left(\delta, f_{\delta}\right)$ st.
(a) $\delta \subseteq M_{\mathbb{R}}$ is given by $\delta=m_{0}^{\prime}-\mathbb{R}_{\geq 0} \cdot m_{0}$ if δ is a ray
(b) and $\delta=m_{0}^{\prime}-\mathbb{R} \cdot m_{0}$ if δ is a line. where $m_{0}^{\prime} \in M_{\mathbb{R}}, \frac{m_{0} \in M \backslash\{0\}}{\text { integral slope }}$
(c) Let $P_{m_{0}}:=\left\{m \in P \mid r(m) \in \mathbb{Q}_{70} \cdot m_{0}\right\}$ then $f_{f} \in \widehat{\mathbb{C}[P]}$ s.t.

$$
\begin{aligned}
\cdot f_{\delta} & =1+\sum_{m \in P_{m_{0}}} c_{m} z^{m} \\
\cdot f_{\delta} & \equiv 1 \bmod m
\end{aligned}
$$

(2) A scattering diagram D over $\mathbb{C}[P] / I$ is a finite collection of lines and rays s.t. $f_{\delta} \in \mathbb{C}[P]$ for each $\left(\delta, f_{\delta}\right) \in D$.
(3) A scattering diagram D over $\widehat{C P}]$ is a countable collection of lines and rays
s.t. only finitely mary satisfying

$$
f_{s} \neq 1 \bmod m^{k}
$$

for each k.
Notations:

- Support : $\operatorname{supp} D=\bigsqcup_{\delta \in D} \delta \subseteq M_{\mathbb{R}}$
- Singularities: $\operatorname{Sing} D=\bigcup_{\delta \in D} \partial \delta \cup \bigcup_{\delta_{1}, \delta_{2}} \delta_{1} \cap \delta_{2}$
only for $\operatorname{dim} \delta_{1} \cap \delta_{2}=0$ rays.
$\xi \gamma$-ordered product of D
- A sm immersion $\gamma:[0,1] \longrightarrow M_{\mathbb{R}} \backslash$ Sing D
st. (1) $\gamma(0), \gamma(1) \notin \operatorname{Supp} D$
(2) r intersects D transversally at

$$
0<t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{5}<1
$$

s.t. (a) $\gamma\left(t_{i}\right) \in \delta_{i}$
(b) $\delta_{i} \neq \delta_{j}$ if $t_{i}=t_{j}, i \neq j$
s is taken as large as possible.
Rome for (b) There may be several lines or rays with the same support.

- Define

$$
\begin{aligned}
& \quad \theta_{r, s_{i}}\left(z^{m}\right)=z^{m} \cdot f_{s_{i}}^{\left\langle n_{i}, r(m)\right\rangle} \\
& \text { for } \cdot m \in P
\end{aligned}
$$

- and a primitive $n_{1} \in N$ sit.
(a) $\left\langle n_{i} \delta_{i}\right\rangle=0$

$$
\text { (b) }\left\langle\eta_{i}, \gamma^{\prime}\left(t_{i}\right)\right\rangle<0
$$

Note if $r(m)=0$ then $\theta_{r, \delta_{i}}\left(z^{m}\right)=z^{m}$.
Then define

$$
\theta_{r, B}=\theta_{r, \delta_{s}} \cdot \cdots \cdot \theta_{r, \delta_{1}}
$$

Some remarks:
(1) If r crosses overlapping lines or rays then the order doesn't matter since they all commute. Note $n_{i} \in \gamma\left(m_{i}\right) \downarrow$
(2) Allow γ to be piecewise linear at t :

Note that n_{0} is
 primitive.
(3) $\theta_{r, D}$ only depend on the homotopy class of γ :

(4) If D is over $\widehat{C P}]$, then
(a) First clefine

$$
\theta_{r, D} \bmod m^{k} \in V_{m^{k}}
$$

only cross finite rays and lines
(b) Then define

$$
\begin{aligned}
\theta_{r, D} & =\lim \theta_{r, D} \bmod m^{k} \\
& \leftarrow \hat{V}
\end{aligned}
$$

§ Consistency
Thm (1) Suppose D is over $\mathbb{C}[P] / I$,
Then \exists a scattering diagram $S_{I}(D)$ sit.
(a) $D \subset S_{I}(D)$
(b) $S_{I}(D) \backslash D$ consists of only rays

$$
\text { (c) } \theta_{r, s_{I}(D)}=I d \in V_{I}
$$

(2) Same is true for D defined over $\widehat{C P]}$ by taking limit in (1)

Rok on uniqueness of $S(D)$

- $S(D)$ is essentially unique by:

If $\left(\delta_{1}, f_{\delta_{1}}\right), \cdots,\left(\delta_{n}, f_{\delta_{n}}\right)$ has the same support, then may replace them by

$$
\left(\delta, \prod_{i=1}^{n} f_{\delta_{i}}\right) \text { where } \delta=\operatorname{Supp}_{p i}
$$

- By doing this to all overlapping lines and rays, arrive et a new D^{\prime}, which is equivalent to S(D) in the sense:

$$
\theta_{r, S(D)}=\theta_{r, D^{\prime}} \text { in } \hat{V}\left(\text { or } \hat{V}_{I}\right) \text {. }
$$

Proof of The . Prove by induction:

- Clearly $O_{\gamma, D} \equiv I_{d} \bmod m^{0+1}$
- Suppose $\theta_{r, D} \equiv I d \bmod m^{k+1}$

Set $D_{n}=D \bmod m^{n+1}$ $\Leftrightarrow f_{\&}$ may still have higher order terms.

- $D_{k-1}^{\prime}=\left\{\left(\delta, f_{\delta}\right) \in D_{k-1} \mid f_{\delta} \neq 1 \bmod m^{k+1}\right\}$

Choose: $p \in \operatorname{Sing}\left(D_{k-1}^{\prime}\right) \rightarrow$ this is a finite set.
r_{p} : a small loop around p containing no other elements in $\operatorname{Sing}\left(D_{k-1}^{\prime}\right)$.

- By incluction:

$$
\theta_{r_{p}, D_{k-1}} \equiv \theta_{r_{p,} D_{k-1}^{\prime}} \equiv \exp \left(\sum_{i=1}^{s} c_{i} z^{m_{i}} o_{n_{i}}\right) \bmod m^{k+1}
$$

where $m_{i} \in m^{k}, \quad r\left(m_{i}\right) \neq 0, \quad n_{i} \in \gamma\left(m_{i}\right)^{\perp}$ primitive and $c_{i} \in \mathbb{C}$.

- Let $D[p]=\left\{\left(p-R_{\geqslant 0} r\left(m_{i}\right), 1 \pm c_{i} z^{m_{i}}\right) \mid i=1, \cdots, s\right\}$ where sign is chosen sit. contribution to $\theta_{r_{p, D}, D p}$ is $\exp \left(-c_{i} z^{m_{i}} \partial_{n_{i}}\right) \bmod m^{k+1}$
- Key: $\forall \xi \in G \in m \cdot(1)$

$$
\left[c_{i} z^{m_{i}} \partial_{n_{i}}, \xi\right] \equiv 0 \quad \bmod \quad m^{k+1}
$$

\Rightarrow automorphisms incluced try rays in $\left.D \Gamma_{p}\right]$ commutes with any automorphisms induced by rays and lines in $D_{k-1} \bmod m^{k+1}$

$$
\Rightarrow \theta_{\left.r_{p}, \otimes_{k+1} \cup D c_{p}\right]} \equiv I d \bmod m^{k+1}
$$

- Finally take $D_{k}=D_{k-1} \cup \bigcup_{p} D[p]$
δA_{n} example

$$
\begin{aligned}
& P=M \oplus \mathbb{N}^{2}=M \oplus\left\langle t_{1}, t_{2}\right\rangle \\
& m=\left\langle t_{1}, t_{2}\right\rangle \\
& I=\left\langle t_{1}^{2}, t_{2}^{2}\right\rangle \subset m^{2}
\end{aligned}
$$

$$
D=\left\{\left(\delta_{1}, f_{\delta_{1}}\right),\left(\delta_{2}, f_{\delta_{2}}\right)\right\}
$$

Goal: $S_{I}(D)=\left\{\left(\delta_{1}, f_{\delta_{1}}\right),\left(\delta_{2}, f_{\delta_{2}}\right),\left(\delta_{3}, f_{\delta_{3}}\right)\right\}$

$$
\Leftrightarrow \theta_{2}^{-1} \circ \theta_{3} \circ \theta_{1}^{-1} \circ \theta_{2} \circ \theta_{1}=I d
$$

Note that

$$
\begin{aligned}
\theta_{i} & =\exp \left(\left(\log f_{i}\right) \cdot \partial_{n_{i}}\right) \\
\left(f_{i}=1+g_{i}\right) & =\exp \left(g_{i} \partial_{n_{i}}\right) \\
\theta_{i}^{-1} & =\exp \left(-g_{i} \partial_{n_{i}}\right)
\end{aligned}
$$

We calculate:

$$
\begin{aligned}
z^{m} \stackrel{\theta_{1}}{\longmapsto} & z^{m} \cdot\left(1+t_{1}\left\langle n_{1}, m\right\rangle z^{e_{1}}\right) \\
& =z^{m}-t_{1}\left\langle e_{2}, m\right\rangle z^{m+e_{1}} \\
\stackrel{\theta_{2}}{\longmapsto} & z^{m} \cdot\left(1+t_{2}\left\langle n_{2}, m\right\rangle z^{e_{2}}\right) \\
& -t_{1}\left\langle e_{2}, m\right\rangle z^{m+e_{1}} \cdot\left(1+t_{2}\left\langle n_{\left.2, m+e_{1}\right\rangle}\right\rangle z^{e_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =z^{m}+t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}}-t_{1}\left\langle e_{2}, m\right\rangle z^{m+e_{1}} \\
& -t_{1} t_{2}\left\langle e_{2}, m\right\rangle\left\langle e_{1}, m+e_{1}\right\rangle z^{m+e_{1}+e_{2}} \\
& \xrightarrow{\theta_{1}^{-1}} z^{m}\left(1-t_{1}\left\langle n_{1}, m\right\rangle z^{e_{1}}\right) \\
& +t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}} \cdot\left(1-t_{1}\left\langle n_{1}, m+e_{2}\right\rangle z^{e_{1}}\right) \\
& -t_{1}\left\langle e_{2}, m\right\rangle z^{m+e_{1}} \\
& -t_{1} t_{2}\left\langle e_{2}, m\right\rangle\left\langle e_{1}, m+e_{1}\right\rangle z^{m+e_{1}+e_{2}} \\
& \text { use } \\
& t_{1}{ }^{2}=0 \\
& =z^{m}+t_{1}\left\langle e_{2}, m\right\rangle z^{e_{1}+m}+t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}} \\
& +t_{1}, t_{2}\left\langle e_{1}, m\right\rangle\left\langle e_{2}, m+e_{2}\right\rangle z^{m+e_{1}+e_{2}} \\
& -t_{1}\left\langle e_{2}, m\right\rangle z^{m+e} \\
& -t_{1} t_{2}\left\langle e_{2}, m\right\rangle\left\langle e_{1}, m+e_{1}\right\rangle z^{m+e_{1}+e_{2}} \\
& =z^{m}+t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}} \\
& +t_{1}, t_{2}\left\langle e_{1}-e_{2}, m\right\rangle z^{m+e_{1}+e_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{\theta_{3}}{\xrightarrow{l}} & z^{m}\left(1+t_{1} t_{2}\left\langle-e_{1}+e_{2}, m\right\rangle z^{e_{1}+e_{2}}\right) \\
& +t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}} \\
& +t_{1} t_{2}\left\langle e_{1}-e_{2}, m\right\rangle z^{m+e_{1}+e_{2}} \\
= & z^{m}+t_{2}\left\langle e_{1}, m\right\rangle z^{m+e_{2}} \\
\stackrel{\theta_{2}^{-1}}{\longrightarrow} & z^{m}
\end{aligned}
$$

